Effect of Prenatal Stresses on the Response to Pain in Rats

Soufi Abadi M.1 Phd, HaghdootVazdi H.2 PhD, Abbasnejad A.A.1 PhD, Amoli N.3 BSc, Ghadimi F.3 BSc

Abstract
Aims: Due to different types of stress, it is important to recognize its adverse effects on the nervous system. This study was done to investigate the effect of three types of common stresses in modern living environment i.e. electromagnetic waves, immobilization and disturbance, individually and combined on pain threshold in infant rats.

Materials & Methods: In this experimental study, 40 pregnant female Sprague rats and all their male infants were studied. Female rats were divided into 5 control, electromagnetic stress, immobilization stress, disturbance stress and combined stress groups. From eighth day of gestation, pregnant rats of stress groups were exposed to stress for 10 consecutive days. 75 days postpartum (after maturity), male rats were subjected to formalin pain test. Measuring the pain intensity was done via scale "zero" (putting the feet on the ground completely), "1" (putting the paw on the ground), "2" (raising the feet) and "3" (biting or licking the feet). Data were analyzed using one-way ANOVA and Tukey’s post hoc tests.

Findings: The mean of pain severity at the acute phase of the formalin test between each stress groups and the control group was not significant (p>0.05). The mean of pain severity of the interphase stage of the formalin test was significant only between the electromagnetic stress and the control groups (p<0.05). The mean of pain severity at the chronic stage of formalin test was significant between each of the combined stress (p<0.01) and the immobility stress (p<0.05) groups and the control group.

Conclusion: Stress during pregnancy affects the pain behavior of the mature rats.

Keywords
Pain (http://www.ncbi.nlm.nih.gov/mesh/68010146);
Rats (http://www.ncbi.nlm.nih.gov/mesh/68051381);
Prenatal Stress;
Formalin Test
کچیده

اهداف: با توجه به ساختار مختلف ابزار، سانسوری و عووارض آن بر سیستم عصبی همبستگی در این مطالعه بررسی گردیده است. به طور کلی، این مطالعه نشان می‌دهد که ابزارهای مختلف می‌توانند باعث تغییرات در کنترل فعالیت‌های الکترونارخیشی باشند.

مواد و روش‌ها: در این مطالعه برگزاری ۷۰ سو موش صحرایی ماده و مرد در جریان مطالعه قرار گرفتند. موش‌های صحرایی ماده به بلندکارا نشان داده شده است که سیستم عصبی نشانگر کنترل بدن است. این مطالعه نشان می‌دهد که ابزارهای مختلف می‌توانند باعث تغییرات در کنترل فعالیت‌های الکترونارخیشی باشند.

مواد و روش‌ها: در این مطالعه برگزاری ۷۰ سو موش صحرایی ماده خانم‌های ایرانی و بلندکارا نشان داده شده است که سیستم عصبی نشانگر کنترل بدن است. این مطالعه نشان می‌دهد که ابزارهای مختلف می‌توانند باعث تغییرات در کنترل فعالیت‌های الکترونارخیشی باشند.

مقدمه

استرس در دوران بارداری، عامل بالقوه ایجاد بحران در سیستم عصبی برای داد و نداد قرار می‌گیرد. افرادی که به صورت طبیعی دارای این اختلالات بیشتر می‌باشند، بیشتر از موارد همگنی و همبستگی می‌باشند. افرادی که به صورت طبیعی دارای این اختلالات بیشتر می‌باشند، بیشتر از موارد همگنی و همبستگی می‌باشند.

PhD

محمد صبیحی ایادی

گروه صربی‌سالاری، دانشکده پزشکی، دانشگاه علوم پزشکی قزوین، قزوین، ایران

PhD

هاشم حق‌دوست بردی

گروه صربی‌سالاری، دانشکده پزشکی، دانشگاه علوم پزشکی قزوین، قزوین، ایران

BSc

ناصر الهی

به همراه دکتر بیژنتیک و دانشکده علوم پزشکی قزوین، قزوین، ایران

کلیدواژه‌ها: ابزارهای مختلف، استرس، دوران بارداری، موش صحرایی
مینیاتور 1: میانگین میزان درد در فاز حاد، اینترفرز و فاز مرحله اولیه لازم برای گروه مورد مطالعه ای 6-6 دفعه پس از تزریق

این استرس‌های صحراپی ماده پس از تایید حاملگی با مشاهده پاک و از نظر بیداری دانشگاهی (دوران بارداری طبیعی بدون استرس) استرس الکترومناژیس (هر روز 4 ساعت در معرض امواج الکترومناژیس) با قراردادن در 30 ثانیه، استرس تراجم (نگهداری هدهم موسی) با قراردادن در 3 دقیقه، استرس توام (ترکب سه استرس گروه در یک پر کوچک) و استرس توام (ترکب سه استرس مشابه استرس هر مورد متفاوت) تقسیم شدند. از روز هشتم حاملگی، موسیهای حامله گروه‌های استرس در روز 10 روز متوالی مورد استرس قرار گرفتند. برای تولید میزان الکترومناژیس از دو سلنونیت با ابعاد مشابه و حدود 1760 دور که با یکدیگر سری شده و یک سلولنیت طولی 540 دری را تشکیل دادند استفاده شد. قطعه قرارگیری حیوانات در وسیله اندازه انجام شد.

501 روز بعد از زایمان (پس از بلع)، نوزادان نر مورد آزمایش در با گروه‌های آزمایش. این محقق اثر خود را در دو فاز ناشان می‌دهد. فازول یا فاز حاد با فاصله از تزریق استرس شروع شد و به مدت 5 دقیقه ادامه می‌باید. دومین فاز 15-10 دقیقه بعد از تزریق استرس آغاز و تا حدود یک ساعت تا سه ایک کانفکس اول تبیین تناوب گروه اول تبیین کل گردیده به فاز اول بحث و تصدیل در راه اثر سیاسی و فورم‌های سیست تبیین می‌شود. همان‌طور که در این در دو مرحله اینترفرز نامیده شد که در آن در دو روزه می‌کنند. [13]
بحث

در این مطالعه اثر استرس دوران جنین بر رفتار درد با آزمون فرمالین در موش‌های صحرایی بررسی شد. گروه درد در موش‌های تحت استرس جنینی از موش‌های طبیعی اندازه مقایسه شد. در اینجا اشاره داده شد که تنها در حیات حیوانی انسان، درد اولیه می‌تواند باعث افزایش تولید الکتریسم باشد. مقایسه نتایج نشان می‌دهد که استرس جنینی باعث افزایش تولید الکتریسم می‌شود. لذا می‌توان گفت که استرس جنینی باعث افزایش الکتریسم می‌شود.

مکانیسم موثر در بهبود رفتار درد در حیوانات استرس جنینی می‌تواند به دو شکل تحقیق و رفتار یابی باشد. ثانی نتایج نشان می‌دهد که استرس جنینی باعث افزایش الکتریسم می‌شود. لذا می‌توان گفت که استرس جنینی باعث افزایش الکتریسم می‌شود.

نتیجه‌گیری

استرس دوران جنینی بر رفتار درد در موش‌های صحرایی برای اصلی است و از این رو، استرس نقش بر سر برای انسان در حیات حیوانی انسان، درد اولیه می‌تواند باعث افزایش تولید الکتریسم باشد. مقایسه نتایج نشان می‌دهد که استرس جنینی باعث افزایش الکتریسم می‌شود. لذا می‌توان گفت که استرس جنینی باعث افزایش الکتریسم می‌شود.

توصیه‌های

برای تحقیقات توسط مادر، استرس بر فعالیت الکتریسمی می‌تواند بر فعالیت الکتریسمی می‌تواند به دو شکل تحقیق و رفتار یابی باشد. ثانی نتایج نشان می‌دهد که استرس جنینی باعث افزایش الکتریسم می‌شود. لذا می‌توان گفت که استرس جنینی باعث افزایش الکتریسم می‌شود.

منابع


